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Features

Several unique features of unmanned aerial vehicle (UAV) wireless communication.

Low cost, flexible deployment, fast response
They are especially suitable for unexpected or limited-duration missions.

Dynamic 3D placement and movement
The maneuverability of UAVs offers new opportunities for performance enhancement.

Short-distance LoS link
Line-of-sight (LoS) air-to-ground communication links can be established in most
scenarios.

Fig. 1. An implementation of UAV communication
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Functions

Typical functions.

UAV-aided ubiquitous coverage
Provide seamless wireless coverage within the
serving area (discussed in this paper).

UAV-aided mobile relaying
Provide wireless connectivity between two or
more distant users or user groups.

UAV-based IoT data collection
Collect delay-tolerant data from distributed
Internet-of-Things (IoT) nodes.

Fig. 2. Three typical functions[3]

In this paper, we consider a three-dimensional (3D) urban environment, where the UAV’s
3D trajectory is designed to minimize data transmission completion time.
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Introduction to Deep Reinforcement Learning

Fig. 3. The flow chart of reinforcement
learning

Solution of sophisticated optimizations
DRL can obtain the solution of sophisticated
optimizations.

Model-free learning
DRL allows agents to learn and build knowledge
about the communication and networking
environment.

Autonomous decision-making
With the DRL approaches, agents can make
observation and obtain the best policy locally
with minimum or without information exchange
among each other.
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System Model for the proposed method
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Fig. 4. Multi-antenna UAV-assisted MISO
communication system.

Simulated 3D Urban Map
The location and height of the buildings are
generated according to a statistical model
recommended by the international
telecommunication union (ITU)[14].

The Large-Scale Fading

PLk(t) =

{
LFS
k (t) + ηLoS,

LFS
k (t) + ηNLoS,

(1)

The Ground-Air (G2A) Channel Gain

hk(t) = 10−PLk (t)/20gk(t), (2)
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Problem Formulation

We consider the time domain is discretized into N time steps. During each time
step, the UAV’s moving strategy can be expressed as

xn+1 = xn + mn sin (φn) cos (θn) , (3)

yn+1 = yn + mn sin (φn) sin(θn), (4)

zn+1 = zn + mn cos (φn) , (5)

For the downlink data transmission service associated with the k-th GT, we define a
binary variable to indicate whether the k-th GT can be served in the n-th time step,
i.e.,

b̃k,n =

{
1, if bk,n = 1, and ck,n = 0,

0, otherwise,
(6)

where bk,n ∈ {0, 1} denotes whether the k-th GT can satisfy the SNR requirement
by the UAV in the n-th time step and ck,n ∈ {0, 1} denotes whether the k-th GT has
been served by the UAV.

We define the serving flag ck,n as

ck,n/0 = min

{
n∑

i=0

b̃k,i , 1

}
, ck,0 = 0 (7)

where if ck,n = 1, the k-th GT has been served during the mission; otherwise, the
k-th GT has not been served.
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Problem Formulation

We adopt the zero-forcing (ZF) precoder as it can obtain a near-optimal solution at
a low complexity. Thus, the received signal at the active GTs in the n-th time step
can be written by

yn = HnWnsn + q, (8)

With the ZF precoding, the transmission SNR for the k-th GT can be expressed as

ρ2
k,n =

P‖hk,nwk,n‖2

σ2
, k ∈ Kn. (9)

The transmission rate between the UAV and the k-th GT can be expressed as

Rk,n = W log2

(
1 + ρ2

k,n

)
, k ∈ Kn, (10)

The hovering time of UAV in the n-th time step, which equals to the maximum
transmission data duration from the Kn GTs, can be expressed as

δht,n = max
k∈Kn

{
Dk

Rk,n

}
, (11)
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Problem Formulation

The completion criterion of the data transmission mission is that all GTs has been
served, which can be expressed as

K∑
k=1

ck,N = K . (12)

The problem to minimize the mission completion time via trajectory optimization
can be formulated as

minimize
{υn,φn,θn},N

∑N
n=0 δn

s.t. ck,n = min
{∑n

i=0 b̃k,i , 1
}
, ∀n, k,∑K

k=1 ck,N = K ,
0 ≤ υn ≤ υmax, ∀n,
0 ≤ φn ≤ π,∀n,
0 < θn ≤ 2π,∀n,
0 ≤ xn ≤ D, ∀n,
0 ≤ yn ≤ D, ∀n,
zmin ≤ zn ≤ zmax,∀n,

(13)

The above optimization problem is a mixed-integer non-convex problem, which is
known to be NP-hard.
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MDP Formulation

We reformulate the optimization problem as a Markov decision process (MDP) structure
so that deep reinforcement learning can be applied. Specifically, an MDP M can be
defined by four elements, 〈S,A,P,R〉, where S is the state space, A is the action space,
P is the state transition probability, and R is the reward in each time step.

UAV

DRL-based 

TDCTM Network

Environment

Replay Buffer

Movement

an  

Training

{sn , an , rn , 𝑠𝑛+1} 

Testing sn  

Minibatch

Fig. 5. DRL-based TDCTM
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MDP Formulation

We define the following state, action, and reward for this problem.

State sn, ∀ n:
sn = [b1,n, · · · , bK ,n; c1,n, · · · , cK ,n; xn, yn, zn; ζn], (14)

bk,n and ck,n: the coverage indicators reflecting the data transmission situation of
the k-th GT in the n-th time step.
[xn, yn, zn]: the three-dimensional position of the UAV in a given region.
ζn: the merged information between environment and UAV agent during the
mission. Specifically, ζn can be expressed as

ζn = ζn−1 + Kn · κcov − κdis − Pob, (15)

where ζn−1 is the remaining pheromone in the (n − 1)-th time step, κcov is a
positive constant that is used to express the captured pheromone per GT, κdis is a
positive constant expressing the lost pheromone, and Pob is a penalty when an
action causes the boundary violation of the UAV.

Action an, ∀ n:
The action is defined as an = [υn, φn, θn]. Since all action variables take continuous
values, the UAV’s trajectory optimization is a continuous control problem.
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MDP Formulation

Reward rn, ∀ n:

rn =

{
rtanh (ζn) + Nre, if

∑K
k=1 ck,n = K ,

rtanh (ζn) , otherwise,
(16)

where the former part can be expressed as

rtanh (ζn) =
2

1 + exp (−ζn/ (K · κcov))
− 1, (17)

which is a shaped reward function of the pheromone ζn. And rtanh (·) approximates
tanh (·) function, but the gradient is smoother than the latter. Besides, at the
mission completion time step, the UAV would obtain a remaining time reward, i.e.,

Nre = Nmax − n, (18)

which thus encourages the UAV to complete the data transmission mission as soon
as possible.

Beijing Institute of Technology (BIT) Yang Wang July 27, 2021 19 / 28



Outline

1 Introduction
Introduction to UAV Wireless Communication
Introduction to Deep Reinforcement Learning

2 System Model

3 Proposed Solution
Problem Formulation
MDP Formulation
Deep Reinforcement Learning-DDPG

4 Simulation Results

5 References

Beijing Institute of Technology (BIT) Yang Wang July 27, 2021 20 / 28



Deep Deterministic Policy Gradient

As shown in Fig. 6, to cope with the continuous control problem with an infinite action
space, the TDCTM network is conceived based on an actor critic algorithm, deep
deterministic policy gradient (DDPG)[11].
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Fig. 6. DRL-based TDCTM network architecture
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DRL-based TDCTM algorithm

Fig. 7 shows the UAV can complete the data transmission service for all GTs.
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Fig. 7. UAV’s 2D and 3D flight trajectories according to the proposed DRL-TDCTM algorithm, where 40 GTs
are considered.
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DRL-based TDCTM algorithm

We compare the average mission completion time of different methods and the
convergence performance versus different numbers of GTs in Fig. 8.
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Fig. 8. The impact of the number of GTs on (a) average mission completion time and (b) convergence
performance (i.e., accumulated reward versus episode).
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Thanks for your attention!
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