
1/17

Broadband Channel Estimation for Intelligent 

Reflecting Surface Aided mmWave Massive 

MIMO Systems

Ziwei Wan, Zhen Gao, and Mohamed-Slim Alouini

Beijing Institute of Technology (BIT), Beijing, China

gaozhen16@bit.edu.cn, ziweiwan@bit.edu.cn

June 8th,  2020

IEEE ICC 2020, Mobile and Wireless Networks (MWN) Symposium

mailto:gaozhen16@bit.edu.cn
mailto:ziweiwan@bit.edu.cn


2/17Joint Active Device and Data Detection for Massive MTC Relying on Spatial Modulation

CONTENTS

1

2

System Model

Proposed pilot design and CS-
based CE solution

A. Downlink pilot transmission

B. Pilot design

C. Proposed CS-based CE solution

3 Simulation Results

IRS with broadband channel model



3/17Broadband Channel Estimation for Intelligent Reflecting Surface Aided mmWave Massive MIMO systems

 Intelligent Reflecting Surface (IRS) aided massive MIMO systems [1]-[4]

 The broadband (frequency-selective fading) property is seldom considered for IRS.

 BS and IRS are equipped with UPAs with M and N antennas, resp., to serve multiple
single-antenna users;

 IRS is passive without any RF chains;

 BS is of fully-connected hybrid architecture [5] with NRF << M RF chains;

1 System Model
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 The downlink BS-IRS delay-domain channel with one LoS path and Lg NLoS paths:

 OFDM system with K subcarriers, NCP cyclic prefix, and sampling space Ts is adopted.
The corresponding frequency-domain channel in the k-th subcarrier is:

 The BS-user channel, , and IRS-user channel, can be similarly modeled.

1

Pulse shaping filter

with delay offset

Steering vectors with AoA and AoD

(DFT to convert delay-domain to frequency-domain)

System Model

LoS part
NLoS part
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 To conduct downlink CE, BS broadcast the pilot signals in the k-th subcarrier 

and i-th time slot. At the user, the received pilot signals can be written as

where are the phase-shifts imposed by IRS.

 Collecting in NP successive OFDM symbols, we have

 Assume the LoS part of Gk is known, and treat the NLoS part as minor interferences.

2.A Downlink pilot transmission

Direct BS-user transmission

Pilot signals reflected by IRS

is the channel to be estimated

The pre-known measurement matrix Effective noise containing the interference

from the NLoS part of Gk
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2.B Pilot design

Challenge(s) Solution(s)

BS-user

channel

The locations of users (w.r.t. BS) are

unknown.

Random pilot at the BS to realize

omni-directional detection [5].

BS-IRS-user

channel

① The locations of users (w.r.t. IRS)

are unknown;

② Severely high path loss due to long

transmission distance.

① Random pilot at the IRS;

② Beam steering at the BS towards

the LoS direction of IRS.

Dedicated to

sounding the BS-

user channels

Dedicated to

sounding the IRS-

user channels
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 The design at the BS:

 The design at the IRS:

2.B Pilot design

The first N1 columns as random pilot.

Each entry is:

,

The last N2 columns as beam steering.

All columns share identical value:1
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 Large-scale arrays at both the BS and IRS  Extremely large dimension of channels 
Unaffordable pilot overhead in traditional algorithms.

 Compressive sensing [4]-[8]: leveraging the angular sparsity of mmWave channels to
significantly reduce the pilot overhead in channel estimation.

2.C Compressive sensing-based CE solution

angular-domain
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 Redundant dictionary [8]: trading off the complexity and estimation performance.

• According to CS theory [6], with enhanced sparsity of channels, the improved
performance of the CS-based CE is expected.

2.C Compressive sensing-based CE solution
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 Standard form of sparse signal recovery problem:

 The structure of channels in broadband system [5][7] can also be exploited.

2.C Compressive sensing-based CE solution

Dictionary matrix Sparse angular-domain channel vector
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 Distributed Orthogonal Matching Pursuit (DOMP) to solve sparse signal recovery problem
with structure.

2.C Compressive sensing-based CE solution

DOMP is the extension of multi-

measurement vector (MMV) in

CS model, also known as general

MMV (GMMV) [7]
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Simulation Results3

Simulation Parameters

• M = N = 256, NRF = 2, N1 = N2 = 1;

• K = NCP = 64;

• 3GPP mmWave channel model [9]

• rp = NP / (M + N): pilot overhead;

• rdic = G / (M + N): redundant dictionary.

 The CS-based CE

scheme outperforms

traditional algorithm

with much less pilot

overhead

Benchmark 1: Well-determined LS [3] with

unaffordable pilot overhead NP = M + N;

Benchmark 2: Completely random pilot

design [5] to meet the RIP in CS;

Benchmark 3: Unitary dictionary [7] with

degraded sparsity in angular-domain

 The proposed pilot

design and redundant

dictionary outperform

their counterparts



15/17Broadband Channel Estimation for Intelligent Reflecting Surface Aided mmWave Massive MIMO systems

Simulation Results3

Simulation Parameters

• M = N = 256, NRF = 2, N1 = N2 = 1;

• K = NCP = 64;

• 3GPP mmWave channel model [9]

• rp = NP / (M + N): pilot overhead;

• rdic = G / (M + N): redundant dictionary.

 For estimating the

BS-user channels,

the proposed pilot

design has a minor 

negative effect,

because it decreases 

the power of pilot

signals transmitted

directly to users

Benchmark 1: Well-determined LS [3] with

unaffordable pilot overhead NP = M + N;

Benchmark 2: Completely random pilot

design [5] to meet the RIP in CS;

Benchmark 3: Unitary dictionary [7] with

degraded sparsity in angular-domain
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Thanks for your listening!


