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 Intelligent Reflecting Surface (IRS) aided massive MIMO systems [1]-[4]

 The broadband (frequency-selective fading) property is seldom considered for IRS.

 BS and IRS are equipped with UPAs with M and N antennas, resp., to serve multiple
single-antenna users;

 IRS is passive without any RF chains;

 BS is of fully-connected hybrid architecture [5] with NRF << M RF chains;

1 System Model
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 The downlink BS-IRS delay-domain channel with one LoS path and Lg NLoS paths:

 OFDM system with K subcarriers, NCP cyclic prefix, and sampling space Ts is adopted.
The corresponding frequency-domain channel in the k-th subcarrier is:

 The BS-user channel, , and IRS-user channel, can be similarly modeled.

1

Pulse shaping filter

with delay offset

Steering vectors with AoA and AoD

(DFT to convert delay-domain to frequency-domain)

System Model

LoS part
NLoS part
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 To conduct downlink CE, BS broadcast the pilot signals in the k-th subcarrier 

and i-th time slot. At the user, the received pilot signals can be written as

where are the phase-shifts imposed by IRS.

 Collecting in NP successive OFDM symbols, we have

 Assume the LoS part of Gk is known, and treat the NLoS part as minor interferences.

2.A Downlink pilot transmission

Direct BS-user transmission

Pilot signals reflected by IRS

is the channel to be estimated

The pre-known measurement matrix Effective noise containing the interference

from the NLoS part of Gk
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2.B Pilot design

Challenge(s) Solution(s)

BS-user

channel

The locations of users (w.r.t. BS) are

unknown.

Random pilot at the BS to realize

omni-directional detection [5].

BS-IRS-user

channel

① The locations of users (w.r.t. IRS)

are unknown;

② Severely high path loss due to long

transmission distance.

① Random pilot at the IRS;

② Beam steering at the BS towards

the LoS direction of IRS.

Dedicated to

sounding the BS-

user channels

Dedicated to

sounding the IRS-

user channels
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 The design at the BS:

 The design at the IRS:

2.B Pilot design

The first N1 columns as random pilot.

Each entry is:

,

The last N2 columns as beam steering.

All columns share identical value:1
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 Large-scale arrays at both the BS and IRS  Extremely large dimension of channels 
Unaffordable pilot overhead in traditional algorithms.

 Compressive sensing [4]-[8]: leveraging the angular sparsity of mmWave channels to
significantly reduce the pilot overhead in channel estimation.

2.C Compressive sensing-based CE solution

angular-domain
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 Redundant dictionary [8]: trading off the complexity and estimation performance.

• According to CS theory [6], with enhanced sparsity of channels, the improved
performance of the CS-based CE is expected.

2.C Compressive sensing-based CE solution
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 Standard form of sparse signal recovery problem:

 The structure of channels in broadband system [5][7] can also be exploited.

2.C Compressive sensing-based CE solution

Dictionary matrix Sparse angular-domain channel vector
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 Distributed Orthogonal Matching Pursuit (DOMP) to solve sparse signal recovery problem
with structure.

2.C Compressive sensing-based CE solution

DOMP is the extension of multi-

measurement vector (MMV) in

CS model, also known as general

MMV (GMMV) [7]
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Simulation Results3

Simulation Parameters

• M = N = 256, NRF = 2, N1 = N2 = 1;

• K = NCP = 64;

• 3GPP mmWave channel model [9]

• rp = NP / (M + N): pilot overhead;

• rdic = G / (M + N): redundant dictionary.

 The CS-based CE

scheme outperforms

traditional algorithm

with much less pilot

overhead

Benchmark 1: Well-determined LS [3] with

unaffordable pilot overhead NP = M + N;

Benchmark 2: Completely random pilot

design [5] to meet the RIP in CS;

Benchmark 3: Unitary dictionary [7] with

degraded sparsity in angular-domain

 The proposed pilot

design and redundant

dictionary outperform

their counterparts
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Simulation Results3

Simulation Parameters

• M = N = 256, NRF = 2, N1 = N2 = 1;

• K = NCP = 64;

• 3GPP mmWave channel model [9]

• rp = NP / (M + N): pilot overhead;

• rdic = G / (M + N): redundant dictionary.

 For estimating the

BS-user channels,

the proposed pilot

design has a minor 

negative effect,

because it decreases 

the power of pilot

signals transmitted

directly to users

Benchmark 1: Well-determined LS [3] with

unaffordable pilot overhead NP = M + N;

Benchmark 2: Completely random pilot

design [5] to meet the RIP in CS;

Benchmark 3: Unitary dictionary [7] with

degraded sparsity in angular-domain
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